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Abstract— Development and performance analysis of ad hoc
networking protocols has typically been performed by making
use of software based simulation tools. However when running
a routing protocol such as OLSR in large mesh network de-
ployments, such as the 300 node Freifunk network in Berlin,
it has been found that many of the optimization features, such
as Multi-Point-Relays (MPRs), don’t produce reliable routing.
Some of the key issues which cause performance degradation
with MPRs are routing loops due to asymmetrical links. In
this paper a simple pragmatic routing protocol called BATMAN
(Better Approach To Mobile ad hoc Networking) is presented
as a response to the shortcomings of OLSR together with a
comparison of its performance to OLSR. The experiments are run
on a custom developed 7 by 7 grid of closely spaced WiFi nodes.
The results show that BATMAN outperforms OLSR in terms of
better throughput, less delay, lower CPU load and lower routing
overhead.

I. I NTRODUCTION

Mesh networking is a relatively new technology originating
out of ad hoc networking research from the early 90’s. As a
consequence, there is still an ongoing effort to find routing
protocols which perform best in large static or quasi-static
wireless mesh networks.

Most of the protocols used for mesh networking grew
directly out of protocols used for ad hoc networks which were
designed with mobility in mind, examples of these protocols
are Optimzed Link State Routing (OLSR) [1], Dynamic
Source Routing (DSR) [2] and Ad-hoc on-demand distance
vector routing (AODV) [3] or may have been adaptations of
these protocols to be more well suited to mesh networks such
as Srcc [4] based on DSR and AODV-Spaning Tree (AODV-
ST) [5] based on AODV.

The premise on which ad hoc networking protocols was
built is very complex, one in which the network has a
constantly changing topology due to mobility and losses over
the wireless medium. A mesh network is a simpler subset
of a general ad hoc network where little or no mobility is
expected and only occasional route fluctuations should occur.
However maximum throughput and minimum delay are far
more important than just maintaining basic connectivity, which
is often the best one can achieve when there is a high
degree of mobility. With these foundational maxims, this paper
presents a protocol called Better Approach to Mobile ad hoc
Networking (BATMAN) which attempts to create a routing

protocol which learns routes using a very basic stigmeric
approach.

Stigmergy is a term coined by a French biologist Pierre-
Paul Grass in 1959 to refer to termite behavior. He defined it
as the stimulation of workers by the performance they have
achieved and is defined by the notion that an agents actions
leave signs in the environment, signs that it and other agents
sense and that determine their subsequent actions. For termites
this is done by leaving pheromone trails that other termites
sense to allow them to follow optimum routes to food or
collectively build termite nests. A popular routing protocol
which makes use of this phenomena is called AntHocNet [6]
and BATMAN exhibits many similarities to te basic philosphy
of this protocol.

In this paper a comparison is made of the performance of
BATMAN and OLSR. The experiments are run on a custom
developed 7 by 7 grid of closely spaced WiFi nodes. The
use of testbeds for comparison of routing protocols is a
recent phenomenon. A recent Network Test Beds workshop
report [7] highlighted the importance of physical wireless
test bed facilities for the research community in view of the
limitations of available simulation methodologies. Thesemini
scale wireless grids can emulate real world physical networks
due to the inverse square law of radio propagation, by which
the electric field strength will be attenuated by 6.02 dB for
each doubling of the distance.

Traditionally ad hoc and mesh networking research has
mostly been carried out using simulation tools but many recent
studies [8] have revealed the inherent limitations these have
in modelling the physical layer and aspects of the MAC
layer. Researchers should acknowledge that the results from
a simulation tool only give a rough estimate of performance.
There is also a lack of consistency between the results of
the same protocol being run on different simulation packages
which makes it difficult to know which simulation package to
believe.

Mathematical models are also useful in the interpretation
of the effects of various network parameters on performance.
For example, Gupta and Kumar [9] have created an equation
which models the best and worst case data rate in a network
with shared channel access, as the number of hops increases.
However, recent work done by the same authors [10] using a
real test bed, employing laptops equipped with IEEE 802.11



Standard (802.11) based radios, revealed that 802.11 multihop
throughput is still far from even the worst case theoreticaldata
rate predictions.

In this paper we aim to:

• Describe the BATMAN protocol
• Briefly describe the working of the OLSR and highlight

differences between OLSR and BATMAN
• Describe the mesh lab environment in which a compari-

son will be made between BATMAN and OLSR
• Analyse and compare the performance of the OLSR and

BATMAN routing protocol on this testbed

II. BACKGROUND

This section will help provide some background to wireless
mesh networking and the specific routing protocols that are
discussed in this paper.

A. Ad hoc and mesh networks

An Ad hoc network is the cooperative engagement of a
collection of wireless nodes without the required intervention
of any centralized access point or existing infrastructure. Ad
hoc networks have the key features of being self-forming, self-
healing and do not rely on the centralized services of any
particular node. There is often confusion about the difference
between a wireless ad hoc network and a wireless mesh
network (WMN).

A wireless ad hoc network is a network in which client
devices such as laptops, PDA’s or sensors perform a routing
function to forward data from themselves or for other nodes
to form an arbitrary network topology. When these devices
are mobile they form a class of networks known as a mobile
ad hoc network (MANET), where the wireless topology may
change rapidly and unpredictably. Wireless sensor networks
are a good example of a wireless ad hoc network.

A wireless mesh network is characterized by: dedicated
static or quasi-static wireless routers which carry out the
function of routing packets through the network, and client
devices, which have no routing functionality, connecting to
the wireless routers. Broadband community wireless networks
or municipal wireless networks are good examples of wireless
mesh networks.

All these types of ad hoc networks make use of ad hoc
networking routing protocols which are being standardizedby
the IETF MANET working group [11]. There is also work
being done to standardize mesh networking in the 802.11s
standard [12].

B. BATMAN

BATMAN was born out of a response to the shortcomings
of OLSR. A community wireless network based on OLSR
known as Freifunk in Berlin noticed that OLSR had many
performance shortcomings when the network grew very large
(it is currently at about 300 nodes) [ref]. These included
routes regularly going up and down due to route tables being
unnecessary flushed as a result of routing loops. There was
a realisation that a routing algorithm for a large static mesh

needs to be developed from first principles and as a result the
BATMAN project was started.

In BATMAN all nodes periodically broadcasts hello packets,
also known as originator messages, to its neighbors. Each orig-
inator messages consists of an originator address, sendingnode
address and a unique sequence number. Each neighbor changes
the sending address to its own address and re-broadcast the
message. On receiving its own message the originator does a
bidirectional link check to verify that the detected link can be
used in both direction. The sequence number is used to check
the currency of the message. BATMAN does not maintain the
full route to the destination, each node along the route only
maintains the information about the next link through which
you can find the best route.

C. System model

A network is modelled asG = (N,E), whereN represents
a set of nodes andE represents a set of links between node
pairs. For each nodei ∈ N in BATMAN, there exist a set of
one-hop neighbours,K. The message from a sources ∈ N

to a destinationd is transmitted along a link(s, d) ∈ E if
d is also an element ofK otherwise it is transmitted along
a multi-hop route made up of a link(s, i) and a route[i, d],
where i is a node inK and (s, i) is a link in E. The route
[i, d] represents a route from nodei to noded through a subnet
S = (N − {s}, A − {(s, i) : i ∈ K}).

D. Routing Objective

The objective is to maximize the probability of delivering
a message. BATMAN does not attempt to check the quality
of each the link, it just checks its existence. The links are
compared in terms of the number of originator messages that
have been received within the current sliding window.

E. Algorithm

step 1 Consider routing messagem from s to d on network
G. Eliminate all links(s, i) ∀ i 6= K to reduce the
graph.

Step 2 Associate each link with weightwsi where wsi is
the number of originator messages received from
the destination through neighbour nodei within the
current sliding window.

Step 3 Find the link with largest weightwsi in the sub-graph
and sendm along the link(s, i)

Step 4 Ifi 6= d repeat Steps 1 to 4 for routing message from
i to d in the sub-graphS

Figures 1 through 3 illustrates the running of the above
BATMAN algorithm for the following scenario:

• Node 1 want to send a message to Node 6. It only consid-
ers this set of links{(1, 2), (1, 3), (1, 4)} to its neighbours
{2, 3, 4}. The corresponding sets are illustrated in 2.

• Determine the best link as the link with higher the largest
number of received originator messages from Node 6

• Suppose(1, 2) is the best link then send message along
this link.



• Since Node 2 is not the destination, reduce the graphN

to graphS and repeat steps 1 to 4 of the algorithm. This
is illustrated in 3

• Node 2 only considers this set of links{(2, 3), (2, 5)} to
its neighbours{3, 5}.

• Determine the best link as the link with higher the largest
number of received originator messages from Node 6

• Suppose(2, 5) is the best link then send message along
this link.

• Since Node 2 is not the destination, reduce the graphN

to graphS and repeat steps 1 to 4 of the algorithm.
• Node 5 only considers this set of links{(5, 6), (5, 3)} to

its neighbours{6, 3}.
• Determine the best link as the link with higher the largest

number of received originator messages from Node 6
• Suppose(5, 6) is the best link then send message along

this link.
• Node 6 is the destination.

Fig. 1. Initial connected GraphG

Fig. 2. Subsets of nodes formed by BATMAN algorithm in the1
st iteration.

It shows the relationship between the three subset that are referred to in the
above algorithm

The version of BATMAN used for all comparison in this
paper is BATMAN 0.3-alpha.

F. Optimized Link State Routing (OLSR) protocol

Pro-active or table-driven routing protocols maintain fresh
lists of destinations and their routes by periodically distributing
routing tables in the network. The advantage of these protocols
is that a route to a particular destination is immediately
available. The disadvantage is that unnecessary routing traffic
is generated for routes that may never be used. The Optimized

Fig. 3. Subsets of nodes formed by BATMAN algorithm in the2
nd iteration.

It shows the relationship between the three subset that are referred to in the
above algorithm

Link State Routing (OLSR) [1] pro-active routing protocol
will be evaluated on the testbed in this paper.

OLSR reduces the overhead of flooding link state informa-
tion by requiring fewer nodes to forward the information. A
broadcast from node X is only forwarded by its multi point
relays. Multi point relays of node X are its neighbors such that
each two-hop neighbor of X is a one-hop neighbor of at least
one multi point relay of X. Each node transmits its neighbor
list in periodic beacons, so that all nodes can know their 2-hop
neighbors, in order to choose the multi point relays (MPR)

Figure 4 illustrates how the OLSR routing protocol will dis-
seminate routing messages from node 3 through the network
via selected MPRs.
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Fig. 4. OLSR routing protocol showing selection of MPRs

The OLSR source code that is run on the wireless grid
can make use of two different types of routing metrics. The
Request for Comments (RFC) for OLSR makes use of the hys-
teresis routing metric to calculate link quality between nodes.
A new routing metric, called Expected Transmission Count
(ETX) [13] proposed by MIT, has also been incorporated into
the source code for OLSR but it is not officially part of the
RFC. This is widely accepted to be a superior routing metric
to basic hysteresis and is therefore used for all comparative
analysis between OLSR and BATMAN.

ETX calculates the expected number of retransmission that
are required for a packet to travel to and from a destination.
The link quality,LQ, is the fraction of successful packets that
were received by us from a neighbor within a window period.



The neighbor link quality,NLQ, is the fraction of successful
packets that were received by a neighbor node from us within
a window period. Based on this, the ETX is calculated as
follows:

ETX =
1

LQ × NLQ
(1)

In a multi-hop link the ETX values of each hop are added
together to calculate the ETX for the complete link including
all the hops. Figure 5 shows the ETX values for 7 consecutive
successful packets followed by 7 consecutive unsuccessful
packets assuming a perfectly symmetrical link and a link
quality window size of 7.

Fig. 5. ETX Path metric values for successive successful and unsuccessful
packets

A perfect link is achieved when ETX is equal to 1. ETX has
the added advantage of being able to account for asymmetry in
a link as it calculates the quality of the link in both directions.
Unlike Hysteresis ETX improves and degrades at the same
rate when successful and unsuccessful packets are received
respectively. Routes are always chosen such that the sum of
all the ETX values of adjacent node pairs is minimized.

The Linux implementation of OLSR developed by Tonnesen
[14] was used for comparisons. This implementation is com-
monly called olsr.org and is now part of the largest open source
ad hoc networking development initiative. Version 0.5.5, which
is RFC3626 compliant, is used and is capable of using the new
ETX metric for calculating optimal routes as well as using an
optimised version of the Dijkstra algorithm.

III. D ESCRIPTION OF THE MESH TESTBED

The mesh testbed consists of a wireless 7x7 grid of 49
nodes, which was built in a 6x12 m room as shown in Figure
6 A grid was chosen as the logical topology of the wireless
testbed due to its ability to create a fully connected dense mesh
network and the possibility of creating a large variety of other

Fig. 6. Layout of the 7x7 grid of Wi-Fi enabled computers

topologies by selectively switching on particular nodes and to
make repeatability of the experiment possible.

Each node in the mesh consists of a VIA 800 C3 800MHz
motherboard with 128MB of RAM and a Wistron CM9 mini
PCI Atheros 5213 based Wi-Fi card with 802.11 a/b/g capa-
bility. For future mobility measurements, a Lego Mindstorms
robot with a battery powered Soekris motherboard containing
an 802.11a (5.8 GHz) WNIC and an 802.11 b/g (2.4 GHz)
WNIC shown in Figure 6 can be used.

Every node was connected to a 100 Mbit back haul Ethernet
network through a switch to a central server, as shown in
Figure 7. This allows nodes to use a combination of a Pre-boot
Execution Environment (PXE), built into most BIOS firmware,
to boot the kernel and a Network File System (NFS) to load
the file system.

Fig. 7. The architecture of the mesh lab. Ethernet is used as a back channel
to connect all the nodes to a central server through a switch.Each node is
also equipped with an 802.11 network interface card.



The physical constraints of the room, with the shortest
length being 7m, means that the grid spacing needs to be
about 800 mm to comfortably fit all the PCs within the room
dimensions.

At each node, an antenna with 5 dBi gain is connected
to the wireless network adapter via a 30 dB attenuator. This
introduces a path loss of 60 dB between the sending node and
the receiving node. Reducing the radio signal to force a multi
hop environment, is the core to the success of this wireless
grid and this is discussed later.

The wireless NICs that are used in this grid have a wide
range of options that can be configured:

• Power level range:The output power level can be set
from 0 dBm up to 19 dBm.

• Protocol modes:802.11g and 802.11b modes are avail-
able in the 2.4 GHz range and 802.11a modes are
available in the 5 GHz range

• Sending rates:802.11b allows the sending rate to be
set between 1 Mbps and 11 Mbps and 802.11g allows
between 6 Mbps and 54 Mbps

This network was operated at 2.4 GHz due to the availability
of antennas and attenuators at that frequency, but in futurethe
laboratory will be migrated to the 5 GHz range, which has
many more available channels with a far lower probability of
being affected by interference.

A more detailed analysis of the lab environment is available
here [15]

IV. M EASUREMENT PROCESS

All measurements other than throughput tests were carried
out using standard Unix tools available to users as part of the
operating system. The measurement values were sent back to
the server via the Ethernet ports of the nodes and therefore
had no influence on the experiments that were being run on
the wireless interface.

It was found that the lab provides the best multi hop
characteristics trade off with the best delay and throughput
when the radios are configured with the following settings:

• Channel = 6
• Mode = 802.11b
• Data rate = 11 Mbps
• TX power = 0 dBm

In order to avoid communication gray zones [16], which
are illustrated in Figure 8, the broadcast rate is locked to the
data rate. Communication grey zones occur because a node
can hear broadcast packets, as these are sent at very low data
rates, but no data communication can occur back to the source
node, as this occurs at a higher data rate.

The following measurement processes were used for each
of the metrics being measured in the ad hoc routing protocols:

1) Testing under network load:For the throughput, route
flapping, delay, packet-loss and CPU and memory load
tests, a set of 4 data paths was setup to continuously send
1500 bytes ping packets across the network in order to
load the network. These were setup between the two

Fig. 8. Communication grey zones.

opposite corner nodes as well as between the nodes in
the middle of the edges. Figure 9 shows the pairs of data
paths that were set up.

Fig. 9. Loading the network with ping traffic across the network.

2) Delay: Standard 84 byte ping packets were sent for a
period of 10 seconds. The ping reports the round trip
time as well as the standard deviation.

3) Packet loss:The ping tool also reports the amount of
packet loss that occurred over the duration of the ping
test

4) Static Number of hops for a route to a destination:The
routing table reports the number of hops as a routing
metric.

5) Round trip route taken by a specific packet:The ping
tool has an option to record the round trip route taken
by an ICMP packet but unfortunately the IP header is
only large enough for nine routes. This sufficed for most
of the tests that were done but occasionally there were
some routes, which exceeded 9 round trip hops, and no
knowledge of the full routing path could be extracted
in these instances. However this was large enough to
always record the forward route taken by a packet.

6) Route flapping: Using the ping tool with the option
highlighted above to record the complete route taken by
a packet every second, it is a simple process to detect
how many route changes occurred during a set period
of time by looking for changes in the route reports.



7) Throughput:The tool Iperf [16] was used for throughput
measurements. It uses a client server model to determine
the maximum bandwidth available in a link using a TCP
throughput test but can also support UDP tests with
packet loss and jitter. For these experiments an 8K read
write buffer size was used and throughput tests were
performed using TCP for 10 seconds. UDP could be con-
sidered a better choice as it measures the raw throughput
of the link without the extra complexity of contention
windows in TCP. This does make the measurement more
complex, however, as no prior knowledge exists for the
link and the decision on the test transmission speed is
done through trial and error.

8) Routing traffic overhead: In order to observe routing
traffic overhead the standard Unix packet sniffing tool
tcpdump was used. A filter was used on the specific
port that was being used by the routing protocol. The
measurement time could be varied by the measurement
script, but 20 seconds was the default that was mostly
used. The tool made it possible to see the number of
routing packets leaving and entering the nodes as well
as the size of these routing packets.
To force dynamic routing protocols such as AODV and
DYMO to generate traffic while establishing a route, a
ping was always carried out between the furthest two
points in the network.

9) Growing network size: When tests are done which
compare a specific feature to the growing number of
nodes in the network, a growing spiral topology, shown
in Figure 10, starting from the center of the grid, is used.
This helps to create a balanced growth pattern in terms
of distances to the edge walls and grid edges, which may
have an electromagnetic effect on the nodes.

Fig. 10. Growing spiral topology for tests which compares a metric against
a growing network size.

10) Testing all node pairs in the network:When throughput
and delay tests were carried out on a fixed size topology,
all possible combinations of nodes were tested. If the
full 7x7 grid was used this equates to 2352 (49 × 48)
combinations.

11) RTS/CTS tuned off:All tests are done with RTS/CTS
disables as this did not improve the performance of the
mesh, other researchers have reported similar findings
[17]

12) CPU load and memory footprint:In order to examine

the resources consumed by a routing protocol, the CPU
load and memory footprint were analysed. The Unixtop
command was used. The cpu and memory consumption
was analysed for 10 seconds and 1 second intervals and
an average was reported.

V. RESULTS

Performance analysis of BATMAN and OLSR is now
presented. The settings for each protocol was made as similar
as possible in order for them to be fairly as possible, although
each protocol has some features which the other does not have.

OLSR was used with the following settings

• HELLO interval = 1 second
• Topology Control (TC) interval = 1 second
• HELLO validity interval = 200 seconds
• TC validity interval = 100 seconds
• Fisheye = ON (TC messages are sent with 3 hop limit)
• Dijkstra limit: Ignore topology info from nodes ¿ 3 hops,

update topology info every 3 seconds
• Linkquality (LQ) is used for MPR selection and routing
• LQ window = 100
• TC redundancy = send to all neighbours
• MPR coverage = 5 (i.e. up to 5 are selected to reach

every 2 hop neighbour) this setting essentially disables
the MPR optimization feature due to the problem with
routing loops

BATMAN was used with the following settings

• HELLO interval = 1 second
• TTL = 50
• Windows size = 100

A. Routing overhead

The ability of a routing protocol to scale to large networks
is highly dependent on its ability to control routing traffic
overhead. Routing traffic contains messages that a routing
protocol needs to establish new routes through a network,
maintain routes or repair broken routes. For BATMAN these
are only Originator messages (OGM’s) and for OLSR these are
HELLO messages as well as Topology Control (TC) messages.
These are sent periodically to allow neighbouring nodes to
learn about the presence of fellow nodes or they can be
topology messages containing routing tables.

The amount of inbound and outbound routing traffic as
well as the packet size of routing packets was measured as
the network size grows in a spiral fashion. The measurement
process was described in Section IV. Once this data was
collected for each node in the network, the traffic was averaged
across all the nodes in the network and normalized to the
amount of traffic per second.

Figure 11 shows the inbound traffic for OLSR and BAT-
MAN and Figure 12 shows the outbound traffic. Outbound
traffic should always be less than the amount of inbound traffic
as a node makes a decision to rebroadcast a packet or not. The
rules for deciding whether to forward a routing packet are the
following for BATMAN



• OGM’s from single hop neighbours are always rebroad-
cast

• Only OGM’s received by the best ranking neighbour are
rebroadcast

• If the TTL has reached 0, the OGM is not rebroadcast
• OGM’s are only rebroadcast to bi-directional neighbours,

there is one exception to this rule when the network has
no knowledge of its neighbours and it needs to test for
bi-directionality.

• When a node receives an OGM, it first checks whether
it already has received an OGM with the same originator
and sequence number. If it has, then the OGM is dis-
carded, without rebroadcasting

Outbound routing packets are the most important overhead
to analyse as the routing protocol has control over this. OLSR
mostly uses less routing packets as it has stricter rules for
forwarding HELLO and TC messages. However above 45
nodes the number of routing packets overtakes BATMAN.
BATMAN rises quickly to an average of 7.5 packets per node
per second but then stays very constant.
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Fig. 11. Inbound routing packets per node per second versus increasing
number of nodes using a growing spiral.

In order to know the true routing overhead of a routing
protocol, the packet length needs to be known. Figure 13
shows how routing packet lengths grow as the number of nodes
increase. This is another important characteristic to analyze if
a routing protocol is to scale to large networks.

As the network grows, OLSR needs to send the entire route
topology in Topology Control (TC) update messages, which
helps explain this steady linear increase with the number of
nodes. BATMAN on the other hand does not embed any
routing information in the routing packets and therefore does
not grow rapidly at all. In order to calculate the total overhead
in terms of bytes per second for a routing protocol, the packet
length is multiplied by the number of packets per second
leaving a node. Carrying out this calculation for OLSR and
BATMAN for the full 49 node grid reveals and overhead of
675 bytes per second for BATMAN and 6375 bytes per second

for OLSR, which reveals that OLSR has a routing overhead
which is 10 fold that of BATMAN for network of this size.
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Fig. 12. Outbound routing packets per node per second versus increasing
number of nodes using a growing spiral.
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Fig. 13. Average Routing Packet length growth versus increasing number of
nodes.

B. Throughput, packet loss, route flapping and delay measure-
ments

The ability of a routing algorithm to find an optimal route
in the grid will be exposed by its throughput, packet loss and
delay measurements. Route flapping, which is an established
phenomenon in wireless mesh networks [18], can also have a
serious detrimental effect on the performance of the network.

The maximum network complexity was used to test which
routing metric in OLSR performed the best under difficult
conditions with thousands of alternative routes. Tests were
carried out for all 2352 (49 × 48) possible pairs in the 7x7
grid and Table I highlights the averages for all the results.

These tests were also performed while the network was
under load by starting 4 simultaneous data streams between
across the network. (see Section IV)



TABLE I

Comparison of throughput, delay and packet loss for full 7x7grid

Routing
Protocol

Forward
hop
count

Symm
links
(%)

Seconds
per
Route
change

Packet
loss
(%)

Delay
(ms)

Throughput
(kbps)

No
link
(%)

BATMAN 1.88 28 25.64 2.63 7.61 1378.35 1.11
OLSR 2.26 61 12.20 1.68 17.39 1177.92 0.60

BATMAN achieved the best overall thoughput as well as the
least delay with the least number of hops. The average amount
of time to a route change was half that of OLSR which could
account for its better throughput due to this route stability. It
also had the smallest number of asymmetrical links which is
symptomatic of a protocol which calculates routes based only
on listening for originator messages from distant sources.

OLSR had about 1% less packet loss and about 0.5 % less
broken links. This however did not translate into any advantage
in terms of better delay or throughput and is not statistically
significant. Double the amount of route flapping is one of the
contributors to its weaker poor performance.

The following graphs take a closer look at how these
protocols perform as the distance between the nodes increase.

A very clear relationship between route changes and dis-
tance is seen in Figure 14, which increases fairly linearly with
OLSR beginning to level off after about 4 m. BATMAN clearly
shows better route stability even at long distances in the grid.
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Fig. 14. Route changes versus distance for the OLSR and BATMAN protocol
in the 7x7 wireless grid

Figure 15 shows the how hop count for BATMAN and
OLSR which quickly diverges as the distance increases.
OLSR’s higher hop count creates more alternative routes to
choose from, which will result in a higher degree of route
flapping and a higher CPU load as will be seen later.

Figure 16 shows that BATMAN always has approximately
15% better throughput than OLSR over the full range of
the grid. This shows that optimal routes are being found by
BATMAN rather than OLSR for all distances. The decreases in
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throughput follows a standard theoretical logarithmic drop-off
(λ(n) = W√

n log(n)
) that is described by Gupta and Kumar’s

theoretical analysis of throughput degradation over multiple
hops for ad hoc networks [9].
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Fig. 16. Throughput versus distance for the OLSR protocol in the 7x7 wireless
grid

These results have been carried out with OLSR fine tuned
to perform optimally for a static mesh network where MPR
optimization is disabled and timeouts are set to very long
intervals. If these optimizations are not employed OLSR would
have shown worse performance [19] due to some of the
inherent weaknesses in OLSR such as routing loops as well as
a high degree of route flapping. The ETX metric has also been
shown to have inherent flaws when calculating the optimal
route path by summing up ETX values of link pairs [19].

Some mechanisms are being developed to decrease BAT-
MAN’s routing overhead and therefore CPU load by aggre-
gating routing messages, which would decrease BATMAN’s
overhead even further but this could begin to penalize it’s gains



on optimal throughput as well as minimal packet loss.

C. CPU load and memory consumption

The results for the amount of resources consumed as the
network size is increased in a spiral fashion is now presented.

CPU load is directly affected by the number of packets it
needs to process as well as the complexity of the algorithm
needed to compute the optimal routes in the routing tables.
The need to use integer or floating point mathematics in
these algorithms also has a great impact. Although BATMAN
exhibited a greater number of outbound routing packets than
OLSR below a network size of 45, it proved itself to be
far less CPU intensive than OLSR for network sizes greater
than 6 as seen in Figure 17 . At the full network size of 49
nodes OLSR was using 44% of a linksys’s CPU compared to
BATMAN which was only using 4%. The impact of OLSR’s
high CPU load is very serious, as it could saturate the ability
of the router to handle routing packets or route data packetsat
fairly low network sizes of just over 100 nodes if the tendency
is extrapolated. Some work is being done to remove floating
point operations from OLSR’s route calculations which would
mitigate some of the CPU load for OLSR. Further comparisons
will be carried out once this code is available.

It is interesting to note that the trend of the CPU load in
Figure 17 for OLSR and the length of the data packets in
Figure 13 is almost identical. This is due the increasing amount
of CPU power necessary to process the embedded topology
information as the amount of node pairs and therefore packet
length increase.
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Fig. 17. Percentage of CPU used versus an increasing number of nodes in
the network

The memory requirements of OLSR are also shown to
increase at a far sharper rate than BATMAN as shown in
Figure 18 due to its need to store complete routing tables for
the whole network. BATMAN on the other hand only needs
to store information about which of it’s local neighbours will
be used to reach distant nodes. OLSR overtakes BATMAN in
terms of memory requirements at 30 nodes but increases at a
far sharper rate.
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Fig. 18. Percentage of memory consumed versus an increasing number of
nodes in the network

VI. CONCLUSION

The results from experiments done so far in the wireless
grid lab with BATMAN and OLSR have shown that, for static
wireless mesh networks, BATMAN outperforms OLSR on
almost all performance metrics.

BATMAN’s simple philosophy of not collecting more infor-
mation than you can use and only getting information about
your neighbours makes computation far more efficient. What
is very encouraging is that a simplified protocol which exhibits
a 10 fold improvement in CPU load at a network size of 49
nodes still shows a 17% improvement in throughput on average
for any node pair in the network. However, OLSR did show a
slight 1% advantage in packet loss as well as 0.5% advantage
in successfully established links on average. But these aretoo
small to be of any statistical relevance.

Many of the links in the wireless grid proved not to be
symmetrical and BATMAN took full advantage of it’s ability
to use non symmetrical links between nodes. Only 28% of
it’s links were symmetrical compared to 61% for OLSR.
BATMAN also proved its ability to stabilize on optimal routes
and avoid a high degree of route flapping by only changing a
route every 25 seconds per node as opposed to OLSR changing
a route every 12 seconds per node on average.

BATMAN’s Routing overhead is also significantly lower
than OLSR in terms of number of bytes per second leaving
a node. Results showed that BATMAN only used about 750
bytes per second of overhead as opposed to OLSR using 6000
bytes per second for the full 49 node network.

Both the low CPU load as well as the lower routing
overhead also bode well for mesh networks that are tyring
to minimize power consumption when running on batteries
being recharged using renewable energy sources.

These results demonstrate that new technical interventions
often move from the primitive to the the complicated and
back to the simple and BATMAN appears to be a watershed
for MANET routing. Perhaps BATMAN is the panacea that



community wireless mesh networks have been waiting for,
which will allow them to scale to large rural villages or across
large cities on small low-cost low power wireless routers.

VII. F UTURE CONSIDERATIONS

Routing protocols are constantly evolving and this holds
true for both BATMAN and OLSR. There is currently work
being done on many fronts. The development community has
launched work on OLSR - Next Generation (OLSR-NG) which
seeks to allow OLSR to scale better. The aim is to allow
OLSR to scale up to 10000 nodes with up to 20000 routes
on embedded hardware with 200 MHz RISC CPU’s and 16
MB of RAM. BATMAN is a parallel approach by many of
the same developers to try something completely new

Within the IETF MANET a new version of OLSR was re-
leased by the academic community at INRIA called OLSRv2.
OLSRv2 is however simply a small tweak of OLSR, it retaines
the same basic mechanisms and algorithms, while providing
a more flexible signaling framework and some simplification
of the messages being exchanged. It can also accommodate
either IPv4 or IPv6 addresses in a compact manner.

What remains to be seen is which one of these three
parallel activities achieves worldwide acceptance and in the
end performs the most optimally for a wireless mesh network.
BATMAN will soon be submitted as an Internet-Draft to the
IETF MANET working group and it is hoped that it will begin
to make more of the ad-hoc network community aware of the
advantages of keeping routing protocols as simple as possible.
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