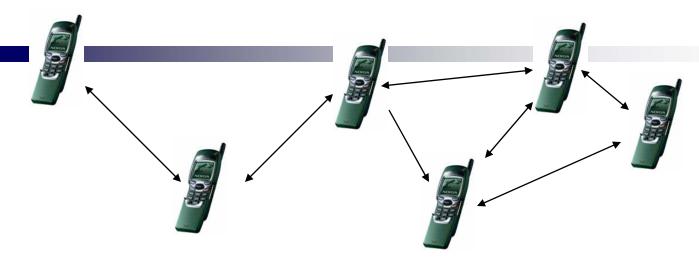
Ad Hoc Networks, IETF, Social Networks

Charles E. Perkins Nokia Research Center charles.perkins@nokia.com

CSIR Pretoria, South Africa September, 2006



Outline of Presentation

- Ad Hoc Networks in general
- IETF structure and relevant working groups
- Performance observations
- Flooding a potential modular component
- Convergence parameterized modular components

Ad Hoc Network characteristics

- peer-to-peer
- multihop
- dynamic
- *Really* "anytime, anywhere"

But, most of these have exceptions! CSIR Pretoria, South Africa September, 2006

- zero-administration
- low power
- autonomous
- autoconfigured

Commercial Opportunities

- Conferencing
- Home networking / Community (mesh) networking
- Emergency services
 - Ambulance, Police
 - Disasters (natural or man-made)
- Hospitals
- Embedded computing applications
 - Ubiquitous computers with short-range interactions
 - Automotive/PC interaction (numerous "devices")!
 - What if wireless computers are *everywhere*?

Other Envisioned Applications

- Digital Battlefield Communications
 - Including sensor networks
- Movable base stations
 - Many military applications
- Campus wireless access from quadrangles
- Immediate, interpersonal communications
- Range extension for cellular telephones
- Enable computing where subnets do not exist
- Some people still ask "What is Ad Hoc Networking good for?".
 - I ask them, "What is *networking* good for?"

Sensor Network Characteristics

- Less dynamic than other ad hoc networks
- Large network sizes (more need for IPv6)
- Battery power truly at a premium
- Congestion less of an issue
- What about latency?!
- Identity of individual nodes less important
 - Affects even concepts of addressability

– Increases need for multicast/anycast/geocast?

CSIR Pretoria, South Africa September, 2006 Copyright 2006

Mesh Networks

- At NRC, view mesh as a special kind of ad hoc network
 - Some designated stable points (+power)
 - Wireless ad hoc nodes freely moving
- Mesh points *may* be Internet gateways
 Or, mesh may be completely disconnected
- Mesh points are natural clusterheads

Traditional Routing Methods

- Advantages of using routing protocols:
 - Self-Starting
 - Multi-Hop
 - Dynamic topology
- Link-State (*Dijkstra's* shortest-path algorithm)
 - Complete topology stored
 - OSPF (RFC 1583)
- Distance-Vector protocols (*Bellman-Ford*)
- Source Routing

Ad Hoc Routing Projects

- Terminodes (EPFL)
- WINGs (JJ Garcia/UCSC)
- ROAM (JJ Garcia/UCSC)
- WAMIS (Gerla/UCLA)
- ODMRP (S.J. Lee/UCLA)
- TRAVLR (Kleinrock)
- Tora/IMEP (Park/UMD)
- Link Quality (Dube/UMD)
- LAR (Texas A&M)
- TBRPF/PacketHop (SRI)
- OLSR (Clausen/Jacquet)
- DSDV (Dest. Sequence #'s)

- AODV (refinement of DSDV)
- AOMDV (Multipath/Das et al.)
- LANMAR (Gerla et.al/UCLA)
- GPSR (Karp/Harvard)
- CBRP (Singapore)
- DSR (Dave Johnson, CMU)
- MMWN (Steenstrup/BBN)
- ABR (C.K. Toh)
- STAR (JJ Garcia/UCSC)
- ZRP (Zygmunt Haas/Cornell)
- Fisheye/Hierarchical (UCLA)
- CEDAR (Urbana-Champaign)

NOK

More Ad Hoc Routing Projects

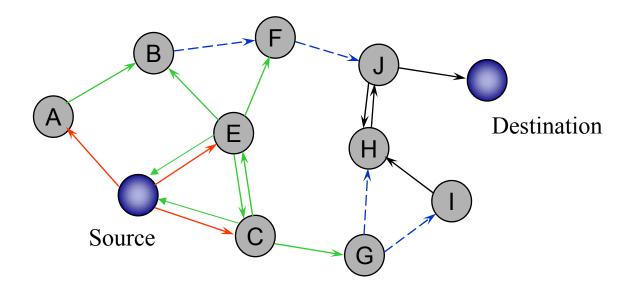
- FRESH (latest encounter)
- ANTS(*swarm intelligence*)
- Ariadne
- Cryptographic Threshhold
- Insignia [QoS] (Columbia)
- AODV6
- FLR ["Feasible"] (UCSC)
- GPS/Geographic
- SHARP
- DMAC (Directional)
- Pulse

- TDR (Trigger based Distributive)
- DREAM
- SAODV (Guerrera)
- LDR (Mosko/Garcia .../Perkins)
 - AODVjr(Chakeres/Klein-Berndt)
- WRP
- Minimum-energy approaches
- Compow
- Face Routing (GOAFR+,...)
- XTC (Topology Control)
- Many more...

Copyright 2006

On-Demand Routing Protocols

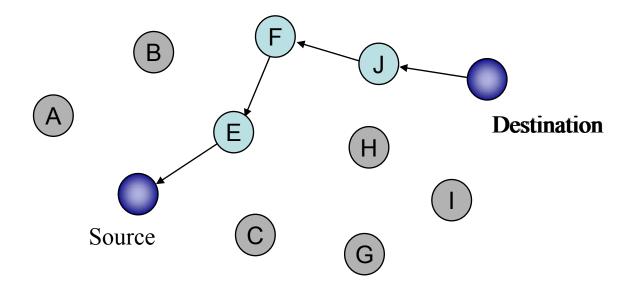
- Eliminate route table updates for unused routes
- Fewer control packets:
 - \rightarrow Better scalability
 - \rightarrow Reduced congestion
 - \rightarrow More robust protocol action
 - \rightarrow Reduced processing
- Also can be made to work for link-state
- Downsides:
 - Traditional IP would signal "ICMP Unreachable"
 - Discovery latency \rightarrow longer application launch times
 - Route Discovery broadcasts
 - Hard to assign value for ACTIVE_ROUTE_TIMEOUT


CSIR Pretoria, South Africa Co September, 2006

Copyright 2006

On-Demand Unicast Route Discovery Initiation

Route Request (RREQ) broadcast flood



CSIR Pretoria, South Africa September, 2006 Copyright 2006

On-Demand Unicast Route Discovery Completion

Route Reply (RREP) propagation

CSIR Pretoria, South Africa September, 2006 Copyright 2006

IETF structure

- IETF has Areas and Area Directors (ADs) IETF has over 100 working groups:
- General Area (AD is IETF chair)
- Applications Area
- Internet Area (most mobility groups here)
- Operations and Management Area
- Routing Area ([manet] is here!)
- Security Area
- Transport Area

IETF mantra

Rough consensus and running code

Consensus requires team building and persistence. Running code requires, well, you know... (but including interoperability too!)

CSIR Pretoria, South Africa Copyright 2006 September, 2006

Relevant IETF working groups

- <u>Mobile Ad hoc Networks [manet]</u>
- <u>Ne</u>twork <u>Mo</u>bility [nemo]
- Address <u>autoconfiguration</u> [autoconf]
 Charter is IPv6 only

Mobile Ad Hoc Networking (manet)

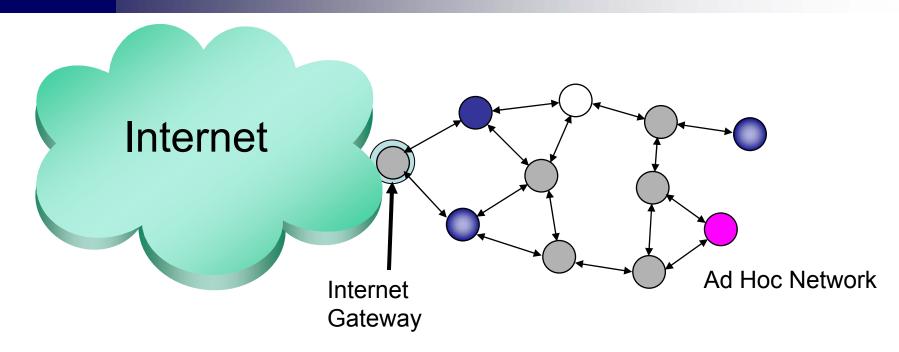
- AODV: on-demand, and distance-vector
 - Interoperability testing
 - Experimental RFC 3561
- Other *on-demand* protocol is (DSR)
- Two link-state, *table-driven | proactive* protocols
 - RFC 3626: Optimized Link-State Routing (OLSR)
 - RFC 3684: Topology-Based Reverse Path Forwarding (TBRPF)
- DSR recently published as Experimental
- Many other protocols have been considered!
 For instance, quite a few of the previous list

[autoconf]

- Address assignment, as needed
 - Disconnected/isolated network case
 - Connected to Internet via a gateway
- Gateway provides routable address prefix
 Allows packets to reach manet nodes
- Nodes can use permanent address with new care-of address in manet

Strategies for address allocation

- Random (works well with IPv6)
- Constructed from MAC address (also works well with IPv6)
- Address pool/subdivision (likewise!)
- Problem: network partition/remerge



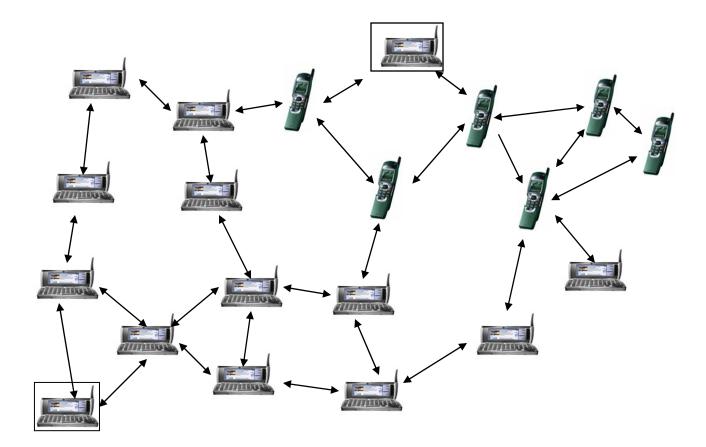
Assured Address Uniqueness

- IPv6 => reliable address uniqueness!
 - By construction from MAC address
 - By random selection
 - Optimistic DAD, e.g.
- This eliminates complexity and signaling
- Even more important for wireless
 - And even more so for sensor nets!
 - Better energy use:1 bit = 10,000+ CPU cycles

Ad Hoc Stub Networks

• If any node has access to the Internet, then all nodes can have access.

CSIR Pretoria, South Africa September, 2006 Copyright 2006



Distance Vector Characteristics

- Very suitable for *on-demand* operation
- Remote movement less likely to propagate – i.e., mobility has more localized effects
- Natural fit for IP route table operation
 - e.g., OLSR and TBRPF use a shortest-path algorithm to fill route table with distancevector entries
- To handle multipath, sort by metric

Is Distance Vector *better* than Link-State?

CSIR Pretoria, South Africa September, 2006 Copyright 2006

Some general performance observations

- When two protocols both lose almost all packets, maybe it doesn't matter which one is "better"
- Flooding → congestion, and flooding is unreliable
 Problematic for creating OSPF extensions!
- At low node populations, what choices matter?
- High hop count increases fragility, latency
- N.B.: minimum hop count can be a *lousy* metric
- On-demand increases startup latency
- Table-driven tends to increase congestion
- Simulation times grow quadr. w/node population

CSIR Pretoria, South Africa September, 2006 Copyright 2006

Simulation performance results

- Old AODV at 10,000 nodes performs poorly
 - 25% packet deliveries in the best of circumstances
 - Even worse without local repair and expanding-ring
- AODV vs. DSR with limited node populations
 - DSR works better under conditions of low mobility
 - Node movement favors AODV's route management
- MAODV has been tested under ns-2, and shows performance difficulties even at low populations
- Gün Shirer at Cornell offers the *Staged Network Simulator* (SNS) using ns-2 for big simulations

More performance results

- # RREQs ~ linearly with the node population
- Line's slope changes depending on strategy
- At 10,000 nodes, most packets are control traffic (in one case, ratio was 5000 to 1)
- End-to-end delay wasn't outrageously terrible (150ms) even at high node populations
- AODV w/expanding ring has the longest latency
- Query localization seems not to work (?why?)
- Should be similar for other on-demand protocols

Ways to produce convergence

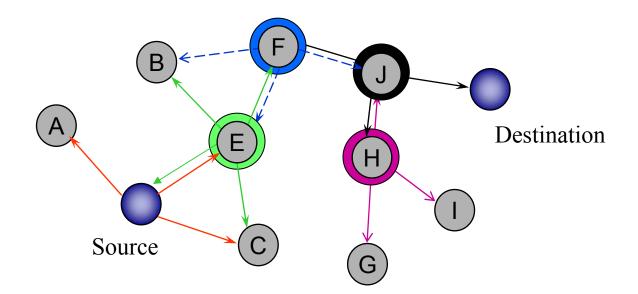
- Modularize features, new and old (not easy!)
 - Flooding
 - Expanding rings search/fisheye routing
 - QoS routing
 - Pulsar/clusterhead/hierarchical/...
 - Internet Gateway operation
 - Multipath, address allocation, etc., etc., ...
- Apply new advances to each routing protocol...
- Eventually, common part may dominate!

Merging Proactive and On-Demand

- Key parameter: *ACTIVE_ROUTE_TIMEOUT*
- If *ACTIVE_ROUTE_TIMEOUT* >> 0, route repair will maintain routes
 - Example: Internet Gateways
- Special case solution: multi-hop Route Advertisement
- Helpful: frequent topology updates
 potentially via "rich" Route Discovery

Flooding: Needed for discovery

- "Application" flooding vs. "IP-level" flooding
 TTL = 1 vs. TTL = network-diameter++ vs. ...
- Multicast vs. Broadcast vs. ???
 - No multicast tree needed
 - 255.255.255.255 isn't right
 - No subnet broadcast
 - Wanted: manet-local flooding
- Our goal: <u>Many</u> fewer packet retransmissions
- Technique: Fewer nodes retransmitting


 E.g., by picking a set of multipoint relays (MPRs)

• Needed: unique identification for flooded packets

CSIR Pretoria, South Africa September, 2006 Copyright 2006

Fewer broadcast retransmitters

Example: Route Request (RREQ) flood

CSIR Pretoria, South Africa September, 2006 Copyright 2006

Connected dominating set (CDS)

- A dominating set *covers* the whole network
- Simpler forwarding if dominating set is <u>connected</u>
- Example: the set of all non-leaf nodes
- Reducing the size of the CDS, using a distributed algorithm, is a very active research area

Known Issues

- Broadcast unreliability (problem for OSPF)
- Dependence on last hop?
 - If so, how do receivers detect sender's identity?
- ICMP vs. UDP vs. IP vs. ??
- *Bundling* for multiple simultaneous messages?
- Fewer relays \rightarrow non-optimal routing!
- Relay nodes in all routes \rightarrow reduced lifetime!
- May be unnecessary for some networks

Flooding comparisons (a few results)

- We can show nice pictures for the nodes that become part of the broadcast skeleton
- <u>Minimal</u> broadcast <u>does</u> reduce PDR
- At 1,000 nodes, TBRPF took all weekend to simulate 3 seconds
- At 1,000 nodes, AODV & reduced broadcast method took 30 min. to simulate 900 seconds
- We also have ideas for further improving the simulator (SNS)
- MUCH work needs to be done!!

Convergence ideas

- DYMO := AODV + DSR; OLSR with TBRPF
 - All could use the same flooding protocol
- Distance Vector with Link State
- On Demand with Proactive
- Modular, Constructible approach
- Adaptive/Hybrid approach
- Simulation Results
 - <u>http://lsewww.epfl.ch/Documents/acrobat/CSA02b.pdf</u>
 - "Simplified Simulation Models for Indoor MANET Evaluation Are Not Robust" (Secon 2004)

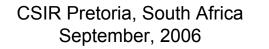
Service Discovery

- Needs same sort of "flooding" operation
- But, instead of an "IP address", a service is needed which meets some desired service criteria (name & attributes)
- Allow a service to be identified by the application *port number*
- Alternatively, use SLP service descriptors

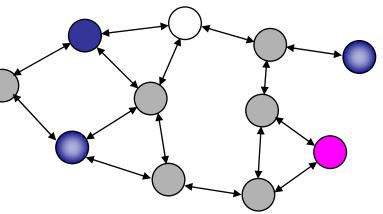
 Others exist

Ad Hoc Quality of Service

- Add QoS constraint to link descriptor
 PPEO for on-demand
 - RREQ for on-demand
 - Topology updates for proactive
- Nodes only forward RREQ if they can possibly meet constraint
- Need ICMP for links that "fail"
- NP complete problems abound, due to congestion management, scheduling


Social Networking

- Friends often provide interesting leads
 - Music
 - Blogosphere
 - Other new friends
- The smartest guy in the room is everybody...
 - "The Wisdom of Crowds" (James Surowiecki)
 - Flickr often (?usually?) gets first pictures of breaking news



Personal Ecosystem

- Opportunity: Make an ecosystem where social interaction is a big win-win
 - So that your friends
 empower you (and, vice-versa)
 - You become further enmeshed and invested

Opportunity!

- Social network can drive acceptance of ad hoc networks
- How can one organize the knowledge of the social community
- How can proximity of ad hoc network fuel new social network applications?
 - For example, locality can improve high performance, video streaming, interactivity, ...

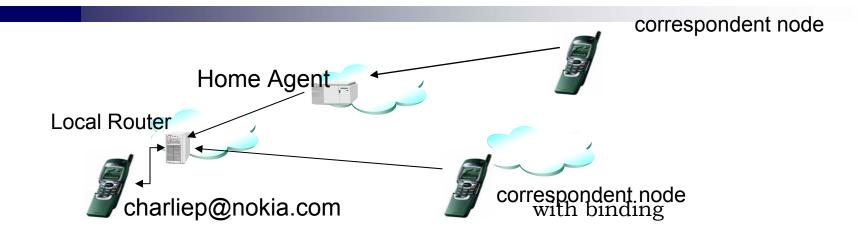
More Current Research Areas

- Topology control/power control
- Incentives for Forwarding
- Cognitive Radio
- Message Ferries
- Security
- 802.11s and Mesh Networking

Challenges for the Future

- Getting to Standard!
- Multicast/Anycast/Geocast/Mobicast
- Security (e.g., route repair!)
- Scalability: the 1/sqrt(N) capacity limit per node –Backbone formation and maintenance
- QoS and don't forget layer 2!
- Multipath routing "vs." route caching
- Route Repair vs. multihop context transfer
- Re-examine the "client-server" paradigm
- Using positional hints (for sensors, worth it!)

CSIR Pretoria, South Africa September, 2006 Copyright 2006



Summary and Conclusions

- IETF *manet* working group working to converge
- Distance Vector can be made loop free, and localizes the effect of topology changes
- On-demand protocols offer many advantages
- Creating modular components aids convergence
- Convergence aids getting to standard
- Ad Hoc Networking is a great research area
 - -Can be applied whenever *infrastructureless*
 - -Related fields: sensor networks, graph theory, ...

Mobile IP protocol overview

- Routing Prefix from local Router Advertisement
- Seamless Roaming: Mobile Node appears "always on" home network
- Address autoconfiguration \rightarrow care-of address
- Binding Updates → home agent & correspondent nodes
 - (home address, care-of address, binding lifetime)

CSIR Pretoria, South Africa September, 2006

Copyright 2006

Backup slides start here...

• In case of specific questions, or if more presentation time is available

