Meraka RTVC Library

Table of Contents

LINEEOAUCTION. ...ttt ettt et st e bt et sb e et e st e s st e bt et e eaeenbeennesanens 2
2 IEETTACES. ...ttt ettt ettt e b e e bt e bt e bt e bt e et e e bt e e nbeebeenateebeeenee 2
2.1, ISettiNGSINEEITACE. ... eeviieiiieiie ettt ettt et sea e et e et e ebeesabeesbeessseesaesnsaens 2
R N 7100 1] B3 (53 3 1o USSP 3

3 BASE CLASSES. ... ettt ettt ettt ettt a e bt et h ettt et b et h e ettt sa e e b entenee e 3
3.1. Using the CCustomBaseFIlter Class.........ccueeiiiieiiieeiiieeieeeee et 3
3.2. Using the CMultilOBaseFilter Class...........coocviiiierieeiiieiieeieeiecie et 4
3.2 T VI VIBW ..ttt ettt ettt ettt e bt e et e e bt e e st e e be e eab e bt e eab e et e e eateebeeeaee 4
B2 2 SR et enteeeitee ettt ettt ettt et e et e e ee et b e e e abee e abee e tteeebbeeebteeenbteeenteeenaeeas 4

3.3, BUIIAINE. c..tieeeiieeee ettt e et e e et e e et e e s bt e e e abe e e tbe e e abeeerbaeetaeenaaeeans 5
ALUFIIERTS ..ottt ettt h et et h et e h e bttt eh e bt en e e ae e b et et et enees 5
T B 3103 ¢ 4 1< SO PUSPSRUS 5
4.1.1. IMAEULIS LIDTATY.....eiiiieiiieiieiieeieeee ettt et et e et e eaeesbeessseenseas 5

4.2. USING the SCAlCFIIET.......eiiiiiieiiie et 5
4.2, 1. DESCIIPLION. ..cutieiieeiieetieeiieesiteeteestteesteestaesteeseaesseeseeseseesseessseeseesnseeseessseenseesnseenseenns 5
4.2.2. LIMIEIATIONS ¢t eutieeiteetee ettt et e ettt et s e e b e et et e st e e bt e esbe e bt e sabeeabeeenbeenseesnseanbeeans 5

4.3, USING the CrOPFIILEr......iiiiiiiiiiiie ettt ettt e e e saeeneesaaa e 5
TG T B D 1Tl ed a1 15 10 s OSSR 5

4.4. Using the RGB YUV420P converter filters..........cccoeviiiriiiiiieniieiieiecieeee e 6
o B D T ed 01 15 10 s SRS 6
5.Live RTSP Audio Streaming Server (Beta)..........occveviieiiiiiiiiiieiieeiieee e 6
I BB LTl ed a1 15 10 o USSP 6
5.1.1.BUild INStIUCLIONS. ..c..veitieiieiiieiiesieeie ettt sttt sttt et et sae e eanens 7

I IV 31 1 1 (0) o PR SRRPS 7

0. COMEACT ..ttt ettt b e et h e et e bttt nh e et esb bt e bt sht e e bt e sbteebeenaneenn 7
/A8 351 11 RSO PRUUUSRUPR 7
DITECESIOW. ...ttt ettt ettt et sb e bt et e bt et e e e saeenee 7
RTP/RTCP/RTSP... ettt ettt ettt e e et neeseeneeeneenee 8

Eo T @ ¢ 11T 8

1. Introduction

The objective of the Real-Time Video Coding group is to research and develop intelligent multimedia
software components and delivery systems that adapt to congested and low infrastructure network
environments. The emphasis is on jointly-optimised or co-operative behaviour between the delivery context,
as in real-time network conditions, and the video/audio encoder rate control mechanisms. Innovative
solutions are sought to enhance the Internet video experience in a developing world context where
bandwidth is a scarce resource.

Current research within the group is concentrating on optimal and weighted context-based bit allocation
techniques and implementations within international standard video codecs. A scalable and bandwidth
adaptive multimedia broadcasting platform is under development to encompass the novelty of the bit
allocation research.

To this end some basic DirectShow filters such as scale, crop and colour conversion filters as well as base
classes and interfaces have been developed which make filter development somewhat easier.

A part of the objective of the Real-Time Video Coding group is to utilise open source frameworks and to
contribute to the open source community as well as to provide source code that is available for general
usage. The filters and source code released are freely available under a BSD license.

2. Interfaces

The status and settings COM interfaces provide a uniform way of interaction with custom DirectShow filters.
The status interface is used for filter-main application communication.

The settings interface is used to configure filter parameters and to obtain the current configuration.

2.1. ISettingsinterface

The settings interface is used to configure filters before they are connected downstream. The
downstream connection finalises the media type and often, such as in the scale and crop filter, the
media type is modified when configuring the filter.

The interface defines the following methods:

« STDMETHOD GetParameter(const char* szParamName, char* szResult, int&
nResultLength)

Use this method to retrieve tha value of a certain parameter where szParamName is the
name of the parameter, szResult is memory that has been allocated to store the result and
nResultLength stores the length of the result if the call was successful and -1 if the call
failed.

- STDMETHOD SetParameter(const char* szParamName, const char* szValue)

This method is used to set filter parameters where szParamName is the name of the
parameter you want to set and szValue is the value you want to set it to. One should always
verify that the call was successful after callng these methods. These methods will return
S_OK if successful and E_FAIL if the call failed.

Some example code follows on how to use the settings interface:
ISettingsinterfacePtr pSettingsinterface = pScaler;

char szParamValue[255];

int nLength = 0O;

HRESULT hrTemp = pSettingsinterface->GetParameter("targetwidth", szParamValue, nLength);

hrTemp = pSettingsinterface->GetParameter("targetheight", szParamValue, nLength);

hrTemp = pSettingsinterface->SetParameter("targetwidth", "800");

hrTemp = pSettingsinterface->SetParameter("targetheight", "600");

2.2. IStatusinterface

The status interface stores errors that have occured. It also has a hook to the the update window

SetFriendlylD(long lid)

This method should be called on each custom filter in the application so that we can identify
filters in the main application thread. The default value is -1.

GetFriendlylD(long& IID)
This method can be called to obtain the ID of the filter provided it has been set previously.

SetlLastError(std::string sError, bool bNotifyApplication) — this method should be called from
inside the filter. If an error occurrs when applying somekind of transform to the input data,
this method should be called with a helpful error message so that the main application can
query the filter about the error.

If bNotifyApplication is true and an event sink has been set on the filter, the filter will notify
the main application with event code WM_TM_GRAPHNOTIFY (EC_USER + 5). The main
application must provide a handler and the friendly ID of the filter should have been set
previously such that the application can identify which filter the notification came from.

GetlLastError(std::string& sError)
This method retrieves the last error that occurred in the filter
SetMediaEventSink(IMediaEventSink* pEventSink)

Set the event sink of a filter using this method so that the filter can notify the main application
thread about occurrences in the filter.

3. Base Classes

3.1. Using the CCustomBaseFilter class

The CCustomBaseFilter class just wraps the settings and status interfaces to create a base Filter
class. The two pure virtual methods InitialiselnputTypes and ApplyTransform must be be overridden
when using this filter as a base class.

Implement InitialiselnputTypes()

The InitialiselnputTypes should be called inside your sub class constructor and is used to
add input types to the filter. Input types can be added to a filter using the AddInputType
method:

AddInputType(&MEDIATYPE_Video, &MEDIASUBTYPE_RGB24, &FORMAT _Videolnfo);

Implement ApplyTransform(BYTE* pBufferin, BYTE* pBufferOut)

This method receives an input buffer and the transformed media should be written to the
output buffer. The size of the transformed data in bytes should be returned. Parameters such
as the dimensions of the input image can be accessed via protected member variables of
the CCustomBasekFilter class such as m_nInWidth and m_nInHeight.

The GetMediaType method must be overridden from CBaseFilter in the usual fashion

« The DecideBufferSize should also be overridden in the usual fashion
3.2. Using the CMultilOBaseFilter class

3.2.1.0verview

The CMultilOBaseFilter class follows the same design as the CTransformFilter class. The only
difference is that it allows the implementer of the subclass to easily create a filter with multiple input
and output pins and takes care of all the base work needed. This should make it easy for anyone
used to writing standard transform filters to reuse this class as a basis for writing transform filters
with x input pins and y output pins.

These base classes take care of:

- Memory management of input and output pins (Covering initial and subsequent
requirements)

« Acceptable media type management on a per pin basis
» Providing an easy way to write transform filters with more than one input/output pin

Similarly to the CTransformFilter class, CBaselnputPin and CBaseOutputPin have been subclassed
and further responsibility has been delegated to the CMultilOBaseFilter class.

In the last release output queues have been added to each output pin to avoid concurrency issues.

This base class does NOT take care of any application logic pertaining to the multiplexing, etc of the
input streams, etc. The code to do this remains the responsibility of the application developer using
the super class, it simply allows one to create a basic filter with multiple input/output pins
effortlessly.

3.2.2.Usage:
On the development the following steps are necessary to use this base class
+ Create subclass of CMultilOBaseFilter
Extend the base class as is illustrated in the example project.
« Call Initialise in your subclass constructor

This method calls the virtual method needed to initialise the acceptable types, subtypes and
formats on the input and output pins of the filter, as well as initial number of input and output
pins

« Override InitiaINumberOfinputPins and InitiaINumberOfOutputPins

The default number of input and output pins is 1. Override these methods if this is not
suitable for your application

« Override InitialiselnputTypes and InitialiseOutputTypes

Call the AddInputType and AddOutputType method with acceptable media types for your
filter's input and output pins.

« Override OnFullCreateMorelnputs and OnFullCreateMoreOutputs

These methods determine whether new inputs/outputs are created once all available ones
have been used.

+ Override DecideBufferSize

This method is very similar to the CTransformFilter method which needs to be overridden.
The extra parameter denotes which output pin the buffer size is being decided for.

« Override GetMediaType

This method again is very similar to the CTransformFilter equivalent. The extra parameter
again denotes which output pin is being queried for its media type.

3.3. Building

The base classes and interfaces are all contained in the DSCustomFilterBase project which builds a
static library. Be sure to link the DirectShow base class library into the projects. Once you’ve built the

static DSCustomFilterBase project lib, be sure to link this into your own custom filter DLL.

4. Filters

4.1. Libraries

At present only parts of the image utils library have been released.

4.1.1. ImageUtils Library

The image utils project is a static library which needs to be linked in to the scale, crop and
RGB conversion filters when building them.

4.2. Using the ScaleFilter

4.2.1. Description

The scale filter is a standard DirectShow filter that scales images to the specified target width and

height.

Target width and height can be configured/obtained programmatically by getting the COM

ISettingsinterface (IID_ISettingsInterface) from the filter and setting "targetwidth" and “targetheight”

using the GetParameter and SetParameter methods.

1)

Type
MEDIATYPE_Video

Subtype
MEDIASUBTYPE_RGB24

Format
FORMAT _Videolnfo

2)

MEDIATYPE_Video

MEDIASUBTYPE_YUV420P (Custom)

FORMAT _Videolnfo

Table 1: Scale Filter Input Types

4.2.2. Limitiations:

The target dimensions can not be greater than twice the original image dimensions.

At present the scale filter only supports RGB24 media and out custom YUV4:2:0 Planar type.

4.3. Using the CropFilter

4.3.1.Description

The crop filter is a standard DirectShow filter that crops images of types RGB24 and RGB32 to the

specified target width and height.

The Crop filter can be configured via the [ISettingsinterface using the following parameters:

Target dimensions:

targetwidth: width of the output image

targetheight: height of the output image

Ratios:

The two grouped values determine a cropping ratio. A ratio of 2:1 (leftcropratio:rightcropratio) would
result in the CropFilter cropping twice as much on the left as on the right side of the image.

One of the grouped values is allowed to be zero, in which case nothing is cropped from that side of
the image.

« topcropratio and bottomcropratio:

» leftcropratio and rightcropratio

Type Subtype Format
1) | MEDIATYPE_Video MEDIASUBTYPE_RGB24 FORMAT_Videolnfo
2) | MEDIATYPE_Video MEDIASUBTYPE_RGB32 FORMAT _Videolnfo

Table 2: Crop Filter Input Types

4.4. Using the RGB YUV420P converter filters

4.4.1. Description

The RGBtoYUV420P conversion filter converts input images of type RGB24 and RGB32 to a
custom YUV 4:2:0 Planar format in which the Luminance and Chrominance values are stored in
separate planes.

This filter is currently being used to convert video streams to a YUV format to prepare the stream for
H263 encoding.

Note that if you build the filters with the BUILD_FOR_SHORT preprocessor directive, each
luminance or chrominance value is stored in 16-bits. If the directive is undefined, 8 bits are used.

The two converters as well as the ImageUtils library should always use the same setting in this
regard, else the conversion back to RGB24 will fail.

Type Subtype Format
1) |MEDIATYPE_Video |MEDIASUBTYPE_RGB24 FORMAT _Videolnfo
2) IMEDIATYPE_Video |MEDIASUBTYPE_RGB32 FORMAT _Videolnfo

Table 3: RGB to YUV420P Filter Input Types

Type Subtype Format
1) IMEDIATYPE_Video |MEDIASUBTYPE_YUV420P (Custom) |FORMAT_Videolnfo

Table 4: YUV420P to RGB Filter Input Types

5. Live RTSP Audio Streaming Server (Beta)

5.1. Description

The RTSP audio streaming server demonstrates the use of integrating the live555 library with
DirectShow. The live555 library is an open-source RTP/RTCP/RTSP library. The application simply
uses DirectShow to capture live audio and then streams this using RTSP/RTP. The stream can then
be listened to via the VLC client. Unfortunately Windows Media Player is not standard compliant and
so can not be used as a client.

This project shows:

+ How to integrate DirectShow and the live555 libraries.

« How to configure the ACMWrapper audio compression filter.

« RTSP aspects of the live555 library.

5.1.1. Build instructions

o > w0 DN =

5.1.2. Limitations

Launch the executable

Build the DirectShowAudioStreamingServer project.

Download the latest version of the LiveMedia library from http://www.live555.com

Build the library and copy the lib file into the lib directory of the solution

The stream can be listened using VLC http://www.videolan.org/vic/

For testing purposes the audio capture device of a webcam was used. The output was compressed
in order to obtain small packet sizes that are suitable for streaming using basic provided live555
classes. Modifications need to be done to the code to cater for audio data of a higher data rates.

This project really just serves as an example on how to get started integrating DirectShow with the

LiveMedia library.

6. Contact:

Please send comments, feedback, suggestions to rtvc (at) meraka (dot) org (dot) za

7. Links:

DirectShow

MSDN

http://msdn2.microsoft.com/en-
us/library/ms783323(VS.85).aspx

DirectShow forum

http://forums.microsoft.com/MSDN
[ShowForum.aspx?ForumID=129&
SitelD=1

DirectShow News Group

http://groups.google.com/group/mi

crosoft.public.win32.programmer.d
irectx.video/topics?start=0&sa=N

Geraint Davies' Page GMFBridge http://www.gdcl.co.uk/

Alessandro Angeli's Programming General http://www.riseoftheants.com/mmx
FAQ [fag.htm

The March Hare's FAQ General http://tmhare.mvps.org/fags.htm
ChrisNet Audio http://www.chrisnet.net/code.htm

http://www.live555.com/
http://www.chrisnet.net/code.htm
http://tmhare.mvps.org/faqs.htm
http://www.riseoftheants.com/mmx/faq.htm
http://www.riseoftheants.com/mmx/faq.htm
http://www.gdcl.co.uk/
http://groups.google.com/group/microsoft.public.win32.programmer.directx.video/topics?start=0&sa=N
http://groups.google.com/group/microsoft.public.win32.programmer.directx.video/topics?start=0&sa=N
http://groups.google.com/group/microsoft.public.win32.programmer.directx.video/topics?start=0&sa=N
http://forums.microsoft.com/MSDN/ShowForum.aspx?ForumID=129&SiteID=1
http://forums.microsoft.com/MSDN/ShowForum.aspx?ForumID=129&SiteID=1
http://forums.microsoft.com/MSDN/ShowForum.aspx?ForumID=129&SiteID=1
http://msdn2.microsoft.com/en-us/library/ms783323(VS.85).aspx
http://msdn2.microsoft.com/en-us/library/ms783323(VS.85).aspx
http://www.videolan.org/vlc/

DirectShow training

Training

http://www.roujansky.com/monBlo
al/pivot/entry.php?id=11#body

Programming Microsoft DirectShow
for Digital Video and Television

http://www.microsoft.com/MSPress
[books/6381.aspx

RTP/RTCP/RTSP

Live555 Streaming Media library

RTP/RTCP/RTSP — Extensive
streaming library with good
support via mailing list.

Slightly higher entry level to get
started.

Emphasis on compliance with
standards.

http://www.live555.com

JRTPLIB

RTP/RTCP

Lower entry level to get started

http://research.edm.uhasselt.be/~j
ori/page/index.php?n=CS.Jrtplib

RTP RFC

http://rfc.dotsrc.org/rfc/rfc3550.html

RTSP RFC

http://rfc.dotsrc.org/rfc/rfc2326.html

RTP — Audio and Video for the
Internet

http://csperkins.org/rtp-book.html

8. Credits:

Thanks to dume777 from the MS DirectShow forum for picking up a bug in the Scale filter.

http://csperkins.org/rtp-book.html
http://rfc.dotsrc.org/rfc/rfc2326.html
http://rfc.dotsrc.org/rfc/rfc3550.html
http://research.edm.uhasselt.be/~jori/page/index.php?n=CS.Jrtplib
http://research.edm.uhasselt.be/~jori/page/index.php?n=CS.Jrtplib
http://www.live555.com/
http://research.edm.uhasselt.be/~jori/page/index.php?n=CS.Jrtplib
http://research.edm.uhasselt.be/~jori/page/index.php?n=CS.Jrtplib
http://www.roujansky.com/monBlog/pivot/entry.php?id=11#body
http://www.roujansky.com/monBlog/pivot/entry.php?id=11#body

	1.Introduction
	2.Interfaces
	2.1. ISettingsInterface
	2.2. IStatusInterface

	3.Base Classes
	3.1. Using the CCustomBaseFilter class
	3.2. Using the CMultiIOBaseFilter class
	3.2.1.Overview
	3.2.2.Usage:

	3.3. Building

	4.Filters
	4.1. Libraries
	4.1.1. ImageUtils Library

	4.2. Using the ScaleFilter
	4.2.1. Description
	4.2.2. Limitiations:

	4.3. Using the CropFilter
	4.3.1.Description

	4.4. Using the RGB YUV420P converter filters
	4.4.1.Description

	5.Live RTSP Audio Streaming Server (Beta)
	5.1.Description
	5.1.1.Build instructions
	5.1.2.Limitations

	6.Contact:
	7.Links:
	DirectShow
	RTP/RTCP/RTSP

	8.Credits:

