olsr.org

'Optimized Link-State Routing' and beyond
December 28th, 2005

Elektra www.open-mesh.net


http://www.open-mesh.net/

Introduction

* Olsr.org is aiming to an efficient open-
source routing solution for wireless
networks

* Work is currently based on the Olsr-
protocol suggested by RFC3626

* There is not much left from RFC3626
now, though. You'll see why...

olsr.org —'optimized link state routing' and
beyond



ldea: Multipoint to Multipoint

T
\\

*A.k.a. Mesh-Networking
* Wireless network based on 802.11 nodes, operating in Ad-Hoc-Mc
*Cover large areas: A and D talk via B and C

olsr.org —'optimized link state routing' and 3
beyond



802.11 Managed Mode doesn't

allow this*

D
®
~

C
@

~
y 3

A B
e -0 -0

Access Point

* A talks to B via central Access Point
*C cannot talk to B or A — although B would be in range of C's Wifi

n operatihg with a single interface

*D and B have to use the AP as rgl)a\yﬁethus speed Is.only 5%
4

olsr.org —'optimized link state routing' and
beyond



802.11 Ad-Hoc Mode

// <
/ f
Va

*Nodes talk directly
* Decentralized & scalable when routing is applied

olsr.org —'optimized link state routing' and
beyond



Proactive Link-State Routing

A B C A
®- - O

H\T//

D D
* Link-Detection via Hello-Broadcasts * Topology Information flooding
* A and B notice each other * Asays 'l see B', B says 'l see A, C, D' A.S.0.
olsr.org —'optimized link state routing' and 6

beyond



Flooding of Topology Information

A B C A B C
o - o -—-0—
° °
D D
A B C A B C
C e C
° °
D D

olsr.org —'optimized link state routing' and
beyond



Topology Message Flooding

<y

* All neighbors retransmit

messages all over the
network

* Bandwidth usage
* Wasting CPU-Cycles

*Collisions

olsr.org —'optimized link state routing' and
beyond



Dijkstra's Algorithm

A B C ABCD
o0 A * * BB
\/ B ke s

5 coh - . -
SR+ +

* Everybody knows everybody else and their links
* Routing table: Dijkstra's Algorithm for shortest paths

olsr.org —'optimized link state routing' and
beyond



OLSR Basics

* INRIA-Draft specified by RFC 3626

* Proactive, using Dijkstra's Algorithm

* Communication via UDP broadcasts

* Multiple OLSR messages per UDP packet
* Validity time in OLSR messages

* Information discarded by timeouts

* Introduced new ideas that were meant to reduce
protocol overhead and increase stability: Hysteresis,
MultiPointRelays

olsr.org —'optimized link state routing' and 10
beyond



RFC3626 |ldea: Reducing Overhead

* Only selected neighbors
(Multi-Point Relays, MPRs)
retransmit TC-messages

* Select MPRs such that they
cover all 2-hop neighbors

* 2-hop neighbors taken from
neighbors' HELLO
messages

* Does not work in real-life!
Reduces redundancy and
stability!

olsr.org —'optimized link state routing' and
beyond

11



Issues In the INRIA-Draft

*Adds new and unnecessary message class of
MPRs

* Still optimizes for lowest Hop-Count
* Discards links to neighbors by Hysteresis
* Reduces topology information redundancy

* Every node floods the whole network (at least
all MPRs)

* Breaks the KISS-Attitude!

olsr.org —'optimized link state routing' and 12
beyond



Real-life results of RFC 3626

*Routing table breaks down all the time

*Prefers routes with shortest path, low
bandwidth and no stability

*Routing loops occur very often

olsr.org —'optimized link state routing' and
beyond

13



Lessons learned by using RFC3626

* A mesh is a big chaos with interference and collisions

* Theoretical solutions are unlikely to work in real life
scenarios.

* Make it work. Make it stable. Worry later about
optimizations routing the whole universe in one subnet...

* Linkstate routing algorithms depend on
synchronized information.

* Transmissions must be redundant (when using Linkstate
protocols...)

* New message types introduce new headaches.

olsr.org —'optimized link state routing' and 14
beyond



What we did...

*Disable Hysteresis in the configuration file
*Disable MultiPointRelay selection

*Implement route calculation depending on
packet loss (LQ-ETX)

*Implement fish-eye mechanism for forwarding
of topology information (Link-Quality-Fish-Eye.
New in olsr-0.4.10)

olsr.org —'optimized link state routing' and 15
beyond



Link Quality |

é 100%_ B . 70% C
* OLSR minimizes hop count, hence favors longer
(lossier) links
* Alternative — minimize packet loss
* A— B — C with 70% path quality
* A— B - D — C with 85% path quality
* Other metrics — latency, throughpuit, ...

olsr.org —'optimized link state routing' and 16
beyond



Link Quality |

é 802.11 data, 90%> B
802.11 ack, 70%

* Minimize Expected Transmission Count (ETX)

* Retransmission — packet or acknowledgment lost
* Packet loss among recent x HELLO messages
*LQ =90%, LQ, = 70%

+ETX=1/(LQ,xLQ) =1/0.63 = 1.59

olsr.org —'optimized link state routing' and
beyond

17



Result: Olsr.org works

* Europe: Many people successfully share DSL-Lines with
their mesh.

* Networks up to 150 nodes work well (2008: 800!)

* Still issues under high traffic load — as links saturate
routing loops occur. (Almost completely solved with
Fisheye)

* Networks that don't saturate their WiFi-Links are not
affected.

* The Berlin mesh with more than 250 routes pushes small
CPUs to the limit

olsr.org —'optimized link state routing' and 18
beyond



A typical routing loop

BestPathto E=C, D, E
(direct link to E has become unusable)

Best Pathto E=B,C,D, E B

A " 104008
& 4

‘ Best Pathto E=D, E

‘ Best Pathto E=B, E
(didn't learn about the
‘ D Topology change yet)

Getting bored...

olsr.org —'optimized link state routing' and
beyond

19



Addressing the routing-loop issue

* Occurs when topology information is not in sync
*Loops happen amongst adjacent nodes
* Interference causes topology information loss

* Payload traffic causes interference

* Topology information must be redundant and sent
often, more often then Hello-messages to provide
information timely

* MultiPointRelays don't help

olsr.org —'optimized link state routing' and 20
beyond



Link Quallty Fish Eye

* Broadcast topology
messages with small
TTL often

*Send messages with
large TTL seldom

* Distant nodes have
hazy view — sufficient

* Saving CPU-Cycles

= 1 e
® . T1L255--@

*Saving Collisions

olsr.org —'optimized link state routing' and 21
beyond



Implementation

*olsrd 0.4.10 — www.olsr.org
* Linux, *BSD, Mac OS X, Windows

* Reasonably stable — Berlin and Amsterdam
(More than 200 Nodes in Berlin)

* Plug-in interface (OLSR Flooding)
* Web-based monitoring
* Link Quality Fish Eye Algorithm

olsr.org —'optimized link state routing' and
beyond

22


http://www.olsr.org/

OLSR-NG

* Austrian NIC foundation gave funds for
performance improvements and code-cleanup

*Huge performance improvements in Dijkstra
algorithm

olsr.org —'optimized link state routing' and 23
beyond



Results from the grid at Meraka

*Olsr-RFC failed the tests (provided only two of
four routes)

*QOlsr with ETX works well, apart from routing
loops if links are saturated.

*B.A.T.M.A.N.-Experimental does not loop.
Ever.

olsr.org —'optimized link state routing' and 24
beyond



Performance comparison of

*Batman-Experimental

*Olsrd with LQ/ETX with Fisheye, with
Dijkstra Limit

*Olsrd with LQ/ETX no Fisheye, no
Dijkstra limit

olsr.org —'optimized link state routing' and 25
beyond



Batman-Experimental

*Avg. packets/sec 12,3
*Avg. packet size 204 Byte
*Avg. traffic/sec 2525,4 Byte
*0,8 % CPU load

*Avg. packet loss 12,7%

olsr.org —'optimized link state routing' and
beyond

26



Olsrd with Fisheye, with Dijkstra

~Limit

*AvQ. packets/sec 17,7

*Avg. packet size 828,2 Byte
*Avq. traffic/sec 14666,8 Byte
*CPU-load 0.3%

*Avg. packet loss 15,9%

olsr.org —'optimized link state routing' and
beyond

27



Olsrd without Fisheye, no Dijkstra

~ Limit

*Avrg. packets/sec 26,2

*Avrg. packet size 1050 Byte
*Avrg. traffic/sec 27492,1 Byte
*CPU-load 3%

*Avg. packet loss 25,7%

olsr.org —'optimized link state routing' and 28
beyond



Thanks
for your
attention.



Questions’?



